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Abstract

This paper examines the effects of deposit insurance in a quantitative macroeconomic

model that incorporates the risk of deposit runs faced by banks. During systemic

panic episodes, alert uninsured depositors tend to withdraw their funds from banks

they perceive as vulnerable. While deposit insurance reduces banks’ susceptibility

to such runs, it may also weaken their risk management incentives, resulting in a U-

shaped relationship between insurance coverage and the risk of bank failure. The model

suggests that the welfare-maximizing level of deposit insurance coverage for the U.S.

in 2008 closely aligns with the observed level. A moderate increase in coverage may

be optimal in contexts of heightened depositor alertness—driven by technological or

demographic factors—, greater fiscal capacity or stronger capital requirements.
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1 Introduction

The seminal work of Diamond and Dybvig (1983) provides the first rigorous foundation for

rational bank runs. At the heart of their analysis is a canonical bank balance sheet: illiquid

loans on the asset side and demand deposits on the liability side. The ensuing maturity

mismatch gives rise to an inherent vulnerability: the prospect of a failure following the

losses incurred in early liquidation of the loans may precipitate self-fulfilling depositor runs.

In the four decades since, empirical studies have made great progress in understanding the

severe macroeconomic consequences of bank runs (Baron, Verner, and Xiong, 2021; Jamilov,

König, Müller, and Saidi, 2024).

Deposit insurance provision by the government is considered the leading solution to reduce

depositor incentives to run on their banks. In fact, Diamond and Dybvig show that in an

economy without fundamental risk, a government that insures deposits in whole can costlessly

eliminate the possibility of bank runs. Yet in practice, banks are exposed to exogenous

and endogenous sources of risk and may fail even without runs, and this makes the public

insurance of deposits fiscally costly. Further, the risk-insensitive pricing of insured deposits

may provide the bank with incentives to lever up excessively and/or take excessive risk

(Kareken and Wallace, 1978) and, more generally, be detrimental to the discipline associated

with financial fragility (Calomiris and Kahn, 1991; Diamond and Rajan, 2001).

Since its introduction in the United States in 1933, the extent to which deposits should

be covered by (federally provided) deposit insurance has been an object of intense debate.

Against the polar alternatives of unlimited deposit insurance and no insurance at all, the

U.S. and most other countries with an explicit deposit insurance scheme provide coverage

to bank deposits up to certain limits (typically in the form of a gross covered amount per

account holder and bank).1 What is the impact of moving those limits on banks’ exposure to

runs? How does it affect credit provision and macroeconomic performance more generally,

especially around bank panic episodes? How big are the fiscal and loss-of-discipline costs

associated with a more generous coverage? Under which conditions is the socially optimal

deposit insurance coverage different from zero or effectively unlimited?

Addressing these questions requires a quantitative framework that captures well the sever-

ity and persistence of macroeconomic losses from bank runs, as well as the impact of deposit

insurance on banks’ risk taking incentives. To meet these requirements, I develop a quan-

1See Demirgüç-Kunt, Kane, and Laeven (2015), who provide a recent, comprehensive account of deposit
insurance systems around the world.

1



titative dynamic general equilibrium model with banks in which panic runs can occur as

a recurring equilibrium phenomenon. In my model, the banking sector is characterized by

three features. First, there are investment opportunities that depend on bank financing.

Second, banks’ unobservable risk management. With low effort, a bank’s risk management

fails and its investment is affected by an idiosyncratic shock. A bank with risky assets has

a positive probability of becoming fundamentally insolvent. Third, banks issue demand de-

posits which makes them potentially exposed to run risk. Specifically, there are depositors

who will withdraw their uninsured deposits from banks that they perceive as sufficiently vul-

nerable to runs. When accommodating early withdrawals, a bank incurs liquidation losses

which can turn them insolvent, opening the possibility of having rational self-fulfilling runs.

The model, which is calibrated to match important data moments of the U.S. economy

and its banking sector over the business cycle, yields two key insights. First, I find a U-shaped

relationship between the level of deposit insurance coverage and the risk of bank failure. This

finding is the result of a large decline in panic-induced failures from increasing the level of

coverage when starting from low levels, which is eventually dominated by increasing risk of

fundamental insolvencies from a weakening of banks’ risk management incentives. Second,

the welfare-maximizing level of deposit insurance coverage for the U.S. in 2008 – roughly

60% of aggregate deposits insured by U.S. FDIC – aligns closely with the level observed in

the data. This level weighs less severe deadweight costs and macroeconomic losses during

the infrequent episodes of bank panics against higher deadweight costs due to fundamental

bank insolvencies in normal times.

The analysis reveals nuanced effects of deposit insurance on banks’ risk management in-

centives. On the one hand, higher insurance coverage makes the pricing of a larger portion

of deposits insensitive to default risk, reducing banks’ funding costs. With the fraction of

deposit funding limited by capital requirements, making deposits cheaper reduces the repay-

ment obligations of the banks, effectively reducing their leverage and having a positive effect

on risk management effort. On the other hand, reducing the losses implied by panics reduces

the disciplinary effect of runs and, ceteris paribus, induces banks to exert lower risk manage-

ment effort. In the calibrated model, the latter force is stronger than the former, resulting in

the weakening of banks’ overall risk management incentives in response to increasing deposit

insurance.

To quantitatively evaluate the effects of deposit insurance, I augment a standard business-

cycle model with banks. In the model banks finance some bank-dependent investment activ-

ities. Banks can reduce the riskiness of those investments by exerting a privately observable
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risk management effort. Specifically, this effort reduces the probability with which their

investments are affected by some bank-idiosyncratic shocks. Effort provision involves in-

creasing and convex costs. Banks are financed with a combination of equity issued to some

bankers, and demand deposits issued to households. They are subject to a capital require-

ment that imposes a minimum proportion of equity funding per unit of assets.

Households’ deposits with banks are insured up to a limit by a governmental deposit

insurance agency. In between any two periods, a proportion of so-called alert households

become cognizant of the banks whose risk management has failed and consider the early

withdrawal of their deposits on the basis of that information. As in the literature, a house-

hold’s incentives to run are driven by first-mover-advantages associated with a sequential

service constraint. Due to some underlying costs of early withdrawals, alert depositors run

on the banks to which they attribute a sufficiently large probability of becoming insolvent by

next period. I focus on situations in which this requires (i) banks being known to be risky,

and (ii) alert depositors anticipating that other alert depositors will attempt to withdraw

early too. Condition (ii) engenders the possibility of multiple equilibria as in Diamond and

Dybvig (1983). As in Gertler and Kiyotaki (2015), I solve the indeterminacy of equilibrium

by assuming that alert depositors coordinate to panic following a sunspot that occurs with

some exogenous probability.

I fit the model to quarterly U.S. data from the Federal Deposit Insurance Corporation

(FDIC), Bureau of Economic Analysis (BEA), and the Flow of Funds Accounts (FoF) cor-

responding to the period 1984-2006. Over this period, the U.S. FDIC effectively insured an

average of 67% of aggregate bank deposits. My baseline calibration sets the deposit insur-

ance limit in the model to replicate this feature of the data.2 The capital requirement is set

at 8%, matching the standards set by the Basel agreements (prior to the reforms initiated

in 2009).

The model matches key balance sheet and income statement moments from banks, to-

gether with macroeconomic aggregates. Moreover, its dynamics are consistent with many

business-cycle correlations in the U.S. data that my calibration does not target. For ex-

ample, it captures the procyclicality of the share of bank financing in the economy, as well

as the countercyclicality of the aggregate share of insured bank deposits and banks’ equity

issuance. Using lending standards as an empirical proxy for banks’ risk taking, I show that

2In practice, the FDIC provided an insurance coverage on nominal deposits up to $100,000 per account
holder and bank over the entire period. Under a fixed nominal insurance limit but with variations in the
amount and composition of deposits over time, the aggregate share of insured deposits in the data is time-
varying (and in fact countercyclical).

3



the model reproduces the strong procyclicality in banks’ incentives for risk taking.

After quantitatively validating the model in this way, I analyze the macroeconomic im-

plications of varying deposit insurance coverage. The effects of deposit insurance on the

incidence and severity of bank runs are quantitatively large. Comparing an economy with

no deposit insurance to the baseline economy with a 67% share of insured deposits, the

proportion of bank failures during panics reduces from 7.6% to 0.8%. The macroeconomic

implications associated with this decline are considerable. Credit-to-GDP declines by 12

percentage points (p.p.) on impact, in contrast to a 30 p.p. fall in an economy without

insurance. In the four years subsequent to a banking panic in the baseline economy, the

average cumulative losses in output and consumption are 4.4% and 4.3%. Instead in the

economy without deposit insurance, the losses are 14.7% and 15.4%, respectively.

By substituting for banks’ incentives to exert proper risk management, deposit insurance

moderately increases the risk of fundamental bank insolvencies. The proportion of banks

failing in normal times (absent panics) increases from 0.16% to 0.19%. The unconditional

mean cost of satisfying the deposit guarantees increases from zero to 0.32% of GDP. While

these loss-of-discipline and funding costs might appear small in comparison to the stabilizing

effects during panics, one has to take into account that panic episodes are infrequent (occur

with an annual frequency of 4%). Computing the welfare of the representative household

under alternative values of the deposit insurance limit, I find that the socially optimal cov-

erage implies insuring 58% of total deposits. In determining this level, the large direct and

indirect losses that are avoided conditional on the realization of panics are traded off with

the negative effects induced over calm periods.

I complete my analysis with two additional quantitative exercises. First, I assess the im-

plications for optimal deposit insurance of an increase in the proportion of alert depositors.3

During episodes of panic, the size of investment to be early liquidated by any vulnerable

bank is increasing in the proportion of depositors which are alert. I show that this implies

a higher optimal coverage level of deposit insurance. Specifically, if the proportion of alert

depositors rises from 5% (baseline) to 10%, the share of total deposits that would be optimal

to insure increases to 73%. Next, I assess the interaction with capital regulation. I find

that if the capital requirement is increased to 10%, the share of total deposits that would be

3Such an increase could be attributed to advancements in technology, including means for speedier
communication (e.g., due to widespread use of social media), and/or easier access to banking services (e.g.,
increased adoption of digital banking). In a recent study, Cookson, Fox, Gil-Bazo, Imbet, and Schiller (2023)
find that communications on Twitter played a major role in the bank run on Silicon Valley Bank (SVB),
and the distress of regional U.S. banks in the wake of SVB’s failure in March 2023.

4



optimal to insure increases to 78%. While both deposit insurance and capital requirements

enhance bank stability, my findings confirm the complementarity conceptually pointed out

by, among others, Kareken and Wallace (1978) and Dewatripont and Tirole (1994).

Related literature. This paper connects to the literature on optimal bank regulation and

to recent work incorporating financial panics in dynamic macroeconomic models. Beginning

with the pioneer analysis of Van den Heuvel (2008), a strand of banking literature has worked

on quantifying the effects of bank capital requirements, and in assessing its socially optimal

level (see, e.g., Collard, Dellas, Diba, and Loisel, 2017; Begenau, 2020; Malherbe, 2020;

Corbae and D’Erasmo, 2021; Elenev, Landvoigt, and Van Nieuwerburgh, 2021; Begenau and

Landvoigt, 2022; Mendicino, Nikolov, Rubio-Ramı́rez, Suarez, and Supera, forthcoming;

Abad, Martinez-Miera, and Suarez, 2024). In many of these papers, distortions in banks’

incentives due to deposit insurance justify the need for constraining leverage via regulation.4

However, all of these setups abstract from bank runs, which is a crucial feature of my model.

An exception to this is Angeloni and Faia (2013), who develop a general equilibrium macro

model with bank fragility to study the interaction between monetary policy and bank capital

regulation.

Bryant (1980) and Diamond and Dybvig (1983) laid the foundation for a vast microeco-

nomic literature on bank runs. A number of papers consider models in which some depositors

receive interim information about the prospects of the bank (e.g., Jacklin and Bhattacharya,

1988; Chari and Jagannathan (1988)). These models explain bank runs as an equilibrium

phenomenon. Rochet and Vives (2004) and Goldstein and Pauzner (2005) also consider

bank run models with unique equilibria, but without information asymmetry between de-

positors. Using global games techniques, they analyze models in the which every agent makes

withdrawal decision based on a noisy signal about the bank’s asset quality (see also Allen,

Carletti, Goldstein, and Leonello, 2018). Dávila and Goldstein (2023) provide a comprehen-

sive account of theoretical papers on bank runs, together with a review of the literature that

analytically characterizes optimal contracts to prevent runs.

This paper is more closely related to work that incorporates financial panics in quantita-

tive models (see, e.g., Gertler, Kiyotaki, and Prestipino, 2020, and Rottner, 2023). Following

the analysis of Uhlig (2010), a common feature of these papers is the focus on systemic runs:

a bank is affected by a liquidity withdrawal only if other banks are affected by liquidity

4The distortions due to deposit insurance, which also appear in my model, find roots in a large theoretical
banking literature. Kareken and Wallace (1978) were among the first to formalize it and present capital
requirements as a substitute for market discipline. See also Keeley (1990), Hellmann, Murdock, and Stiglitz
(2000), and Repullo (2004).
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withdrawals too. That is, a depositor withdraws from her bank if she perceives all other

depositors will withdraw from all their banks, and that the ensuing systemic run could

collapse the entire banking system due to fire sale of liquid assets to inefficient outside in-

vestors. Similarly to these papers, I model panic episodes as the result of a sunspot and some

underlying strategic complementarities that drive investors’ rational withdrawal decisions.

Differently from these papers, those complementarities operate at bank level (rather than at

a system-wide level) and panic episodes in my model have heterogeneous implications across

banks.

Finally, the effects of deposit insurance on banks’ risk taking incentives in my model are

related to the view of financial fragility as source of incentives for bank managers (Calomiris

and Kahn, 1991; Diamond and Rajan, 2001), which implies a loss of market discipline from

the insurance of bank deposits and, more generally, from making banks less exposed to runs.

In line with this view and the trade-offs captured by my model, the cross-country analysis

in Anginer, Demirgüç-Kunt, and Zhu (2014) shows that providing more generous deposit

insurance increased bank risk in the years leading up to the global financial crisis, while

offering stabilization effects during the crisis.5

Outline. The rest of the paper is organized as follows. Section 2 describes the model

and its key equilibrium conditions. Section 3 contains the baseline calibration of the model

and its results regarding banks’ risk taking incentives and the response of the economy to

the realization of a panic episode. In Section 4 I analyze the performance of the economy

under alternative levels of the deposit insurance coverage, identifying the level that maximizes

social welfare. The Appendix contains a complete list of equilibrium conditions, data sources,

solution method, and several complementary materials referred throughout the main text.

2 The model

I consider an infinite-horizon economy cast in discrete time, in which dates are indexed by

t. There is a single non-durable consumption good in every date used as the numeraire,

and which can be transformed into physical capital used for production. At any given

date the economy is populated by: (i) households; (ii) banks; (iii) a representative non-

bank-dependent (physical-)capital-producing firm; (iv) a representative consumption-good

5Demirgüç-Kunt and Detragiache (2002), Demirgüç-Kunt and Huizinga (2004), and Gropp, Gruendl,
and Guettler (2014) provide additional evidence of risk taking incentives induced by deposit insurance. See
Allen, Carletti, and Leonello (2011) and Anginer and Demirgüç-Kunt (2018) for excellent reviews.
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producing firm; and (v) a deposit insurance agency (DIA).

Households. Each household is infinitely-lived and makes consumption-savings decisions

to maximize its inter-temporal expected utility. It can invest its savings in the non-bank-

dependent capital-producing firms, and hold (partially) insured demand deposits with banks.

The household consists of two classes of members: workers and bankers. These agents

obtain consumption insurance from the household. The workers inelastically supply one-

unit of labor to the representative consumption-good producing firm and transfer their wage

income to the household. The bankers manage the household’s investments in banks’ equity

which are subject to frictions further specified below.

Banks. There are a continuum of measure one of banks. They are perfectly competitive

and operate under limited liability. They borrow from households by issuing demand deposits

and issue equity among bankers in order to comply with a regulatory capital requirement.

Each bank manages an investment project in physical-capital production that is operational

between two consecutive dates. Its project is subject to bank-idiosyncratic shocks, whose

realization affects the effective-units of capital produced. Banks can exert effort in reducing

the likelihood of its project being exposed to the idiosyncratic-shocks.

Non-bank-dependent firms and consumption goods production. There is a rep-

resentative non-bank-dependent (physical-)capital-producing firm that raises direct financing

from households. A representative consumption-good producing firm combines non-bank-

dependent physical capital, bank-dependent physical capital, and labor to produce consump-

tion good.

Deposit insurance agency. The DIA is responsible for the resolution of failed-banks.

It raises lump-sum taxes from the household to cover the losses on the insured portion of

deposits of the banks that defaulted as a result of their previous period of operation. The

taxes are subject to deadweight costs, explained below in greater detail.

The following subsections describe each of these agents, their optimization problems, and

the definition of equilibrium in detail.

2.1 Production environment

Non-bank-dependent firms and banks produce one class of physical capital each, labeled h

and b, respectively. These classes of physical capital are not perfect substitutes and, hence,

can be eventually rented to the consumption-good-producing firms at different equilibrium

7



rental rates.6

Non-bank-dependent production. The representative firm from the non-bank de-

pendent sector can transform aht consumption good units from the household in period t into

kht+1 = aht units of physical capital of class h in period t + 1. Renting this capital at t + 1

yields a per-unit rental rate rht+1 and the recovery of 1−δh units of consumption good, where

δh is the depreciation rate.7 So the gross return of this class of capital is Rh
t+1 = 1+rht+1−δh.

Bank-dependent production. A bank j can transform abjt units of consumption good

into

kbjt+1 =

ωj

(
abjt −

ljt+1

1−λ

)
, with probability 1−mjt,

abjt − ljt+1, with probability mjt

(1)

units of physical capital of class b in period t + 1. Renting this capital at t + 1 yields a

per-unit gross return Rb
t+1 = 1 + rbt+1 − δb, where rbt+1 and δb are the corresponding rental

and depreciation rates.

In Equation (1), ωj is a bank-idiosyncratic shock realized at t + 1. It is identically dis-

tributed across time and across banks. mjt ∈ [0, 1] is a variable that captures managerial

bank-level risk choice. It is private information of the bank at date t. The term ljt+1 > 0

captures the possibility that at the beginning of period t + 1, the bank j may have to

(early-)liquidate a portion of investment, after learning whether or not it is exposed to the

idiosyncratic-shocks, but before the realization of shocks and the completion of production

process. The early liquidation process involves reversing the investment into consumption

good, and is associated with proportional losses λ conditional on the investment being ex-

posed to the idiosyncratic-shocks.8

The bank-idiosyncratic shocks ωj are log-normally distributed, with E(ωj) ≤ 1. Bank j’s

exposure to the shock at t+ 1 is determined by its choice mjt.
9 I assume that the choice of

mjt is associated with a cost C(mjt) per unit of investment, where the function C(m) satisfies

C(0) = C ′(0) = 0, C ′(m) > 0, and C ′′(m) > 0. Under this formulation, banks’ risk choice can

6The non-bank-dependent sector in my model can be interpreted as consisting of large firms with access to
capital markets, and the bank-dependent sector as consisting of small-and-medium sized firms who primarily
rely on bank financing. My modelling framework closely follows Abad et al. (2024). See Begenau (2020) or
Davydiuk (2017) for alternative frameworks with similar interpretation.

7I model physical capital as fully fungible into consumption good after one period to minimize the number
of state variables in the model.

8These losses can be interpreted as due-diligence costs, or costs incurred due to lack of redeployability
of assets exposed to idiosyncratic risk (see, e.g., Williamson, 1988).

9The formulation of banks’ risk taking choices in probabilistic terms is similar in spirit to Martinez-Miera
and Repullo (2017).
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be interpreted as their effort in exerting proper risk management.

The role of banks in my model is justified along the lines of Diamond and Rajan (2001).

As I will show below, the fragility of banks’ capital structure provides incentives for them to

exert proper risk management. At the same time, the safety-net due to deposit insurance,

standard limited liability distortions, and the unobservability of mjt to depositors and the

DIA can make sub-optimal risk management (risk-shifting) attractive to the banks.

Consumption goods production. A representative consumption-good producing firm

combines non-bank-dependent physical capital Kh
t , bank-dependent physical capital K

b
t , and

labor Ht to produce

Yt = ztG(K
h
t , K

b
t , Ht) (2)

units of consumption good, where G(·) is a constant-returns-to-scale production function,

and zt is an aggregate productivity shock. The firm maximizes its profits Yt−rhtKh
t −rbtKb

t −
WtHt taking the rental rates rht and rbt and the wage rate Wt as given.

2.2 Households

In each period t, the households obtains utility from the consumption of non-durable goods.

They inelastically supply one unit of labor to the representative consumption-good producing

firm, remunerated with a wageWt; receive net dividend payments Ξt from bankers as further

specified below; and pay lump-sum taxes Tt to the DIA. Households save in the form of

demand deposits at banks and invest in claims on physical capital issued by the non-bank-

dependent sector.

Bank deposits held by households are insured by the DIA up to a limit D̄. In practice,

this means that even in the event of a bank failure, the household is guaranteed to recover

deposits in the failing bank up to D̄ (including any accrued interest). Deposits in excess of

the insured limit are subject to default risk. In particular, if a banks fails the DIA repossess

its assets in order to first recoup what it owes to satisfy the deposit guarantees, and any

residual proceeds are distributed among (partially) insured depositors on a pro-rata basis.

The problem of the household involves choosing consumption Ct, bank deposits Dt, and

investment in claims issued by the non-bank-dependent sector Ah
t , so as to maximize its

expected discounted lifetime utility

Et

∞∑
τ=0

βτU(Ct+τ ), (3)
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where β is the subjective discount rate, and U(·) is a standard concave, twice continuously

differentiable function. In each period the household is subject to the following budget

constraint

Ct +Dt +Ah
t = Wt +min{D̄, Rd

t−1Dt−1}+max{R̃d
tDt−1 − D̄, 0}+Rh

tA
h
t−1 + Ξt − Tt, (4)

where the second term on the right hand side are the (safe) gross returns min{D̄, Rd
t−1Dt−1}

in period t of the deposits held at banks up to the insured limit D̄, and the third term are

the (potentially risky) gross returns max{R̃d
tDt−1 − D̄, 0} in period t of any deposits held at

banks above the insured limit. I am interested in a symmetric equilibrium, hence I assume

that at date t the household invests its deposits symmetrically in all the (symmetric) banks

in the economy.

In addition to the inter-temporal decisions in the above problem, households also face an

intra-temporal choice regarding early versus late withdrawal of their deposits. Abstracting

from idiosyncratic intra-period liquidity needs that might justify early withdrawals as in the

literature (e.g., Diamond and Dybvig, 1983), my analysis focuses on the vulnerability to

self-fulfilling runs that the demandability of deposits generates. Particularly, in between any

two consecutive dates, coordination problems may trigger (some) households to withdraw

their deposits from some banks (specifically, those suffering realizations of ωj for which a run

has the power to turn the bank insolvent). Further details on households’ run incentives on

specific banks are described in Section 2.4.

2.3 Bankers

Bankers manage their household’s investment in bank equity. Let Vt(n
b
t) be the value of

being a banker managing net worth nb
t in period t. The banker can vary that net worth by bt

at a pecuniary cost Υ(b+t ) given by an increasing and convex function with Υ(0) = Υ′(0) = 0

and b+t ≡ max{bt, 0}. So, reflecting (unmodeled) frictions in the equity raising process, equity

issuance (bt > 0) is costly while discretionary dividends (bt ∈ [−nb
t , 0)) are not.

The banker can invest the resulting funds, nb
t + bt, in equity of any of the banks operating

between t and t+1, taking as given the distribution of equity returns Re
t+1. Out of the gross

returns earned at t+1, an exogenous fraction 1− θ is paid out to the household and the rest

is retained under the management of the banker. The optimization problem of a banker can
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be recursively stated as follows

Vt(n
b
t) = max

bt≥−nb
t

{
−bt −Υ(b+t ) + Et

[
Λt+1(1− θ)Re

t+1

]
(nb

t + bt) + Et

[
Λt+1Vt+1(n

b
t+1)

]}
(5)

with

nb
t+1 = θRe

t+1(n
b
t + bt), (6)

where the first two terms in (5) account for newly raised equity (or discretionary dividends

if bt < 0) and its issuance costs; the third term reflects the expected discounted value of the

exogenously distributed part of the returns generated at t + 1 by the investment in bank

equity in period t; and the fourth term is the expected discounted value of the net worth

retained under banker’s management at t + 1. Equation (6) is the law of motion of that

net worth. As the household is the final receiver of all the payoffs from the wealth that

bankers manage, future payments and values are discounted with the stochastic discount

factor Λt+1 = βU ′(Ct+1)/U
′(Ct). I am interested in a symmetric equilibrium, hence I assume

that each banker invests symmetrically in all the (symmetric) banks in the economy.

2.4 Banks

Banks are constant-returns-to-scale intermediaries that operate between any two consecutive

periods. They maximize the net present value of the equity that bankers invest in them.

In period t, a bank j combines this equity ejt with (partially) insured deposits djt issued to

the household in order to finance investment abjt in a physical capital project. Hence, the

balance sheet identity of bank j imposes that

abjt = ejt + djt. (7)

In addition to capital structure decisions, the bank chooses its risk management effort,

mjt, which determines the probability that its funded investment is exposed to the bank-

idiosyncratic shocks at t+1. Importantly, all items on the bank’s balance sheet are publicly

observable at date t, but its choice of risk management effort is not.

As under the various versions of the Basel Accord after 1988, I assume that banks are

subject to a minimum regulatory capital requirement of the form

ejt ≥ γabjt, (8)
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which imposes that at least a fraction γ of the bank’s assets have to be financed with equity

capital.10

At any date t, all banks in the economy face identical constraints, receive a symmetric

infusion of equity from bankers, as well as symmetric investment of deposits from households.

Since all banks are ex-ante identical, I focus on a symmetric equilibrium in which banks make

identical decisions at t.

Sunspot process and panic runs. At the beginning of t + 1, before the realization

of the shocks and the completion of production, a fraction ζ of banks’ depositors – dubbed

alert depositors – learn the identity of banks which are exposed to the idiosyncratic shocks

and can withdraw their deposits. That is, the alert depositors at this stage can distinguish

between banks whose risk management effort at t either succeeds (sj = 1) or fails (sj = 0) in

insulating itself from the (yet-to-be-realized) shocks ωj. The non-alert depositors are called

sleepy and remain uninformed and passive at this stage.11

During this stage, coordination problems can trigger panic runs. In particular, a (partially

-insured) alert depositor runs on a bank if, given their (rational) beliefs about the behavior of

other alert depositors, they attribute a sufficiently high probability to the possibility that the

bank becomes insolvent. To simplify the analysis, I assume that under the parameterizations

explored in the analysis, this sufficiently large probability of insolvency requires all other alert

depositors to withdraw their deposits, forcing the bank to early-liquidate investments.12 As

in the literature, the incentives for alert depositors who expect the bank to go bankrupt

to run are driven by first-mover-advantages associated with a sequential service constraint

(see Diamond and Dybvig, 1983). In this situation two equilibria can exist: a “normal”

equilibrium in which there are no early liquidations and only the fundamentally insolvent

banks (if any) eventually fail, and a “panic” equilibrium in which alert depositors run on all

the vulnerable banks (those with sj = 0).13

10Consistent with the assumption that banks’ risk management effort is not observable to depositors and
the DIA, this requirement is not contingent on mjt.

11The distinction between sleepy and alert depositors has been made in the previous literature by, e.g.,
Jacklin and Bhattacharya (1988); Hanson, Shleifer, Stein, and Vishny (2015); Jiang, Matvos, Piskorski, and
Seru (2020); Drechsler, Savov, Schnabl, and Wang (2023). In a recent study on the 2023 panic runs in the
US surrounding the collapse of Silicon Valley Bank, Jiang, Matvos, Piskorski, and Seru (2024) highlight the
role of sleepy vs. alert depositors in determining the consequences of panics.

12The precise probability threshold above which this assumption holds will be provided in the quantitative
part of the analysis.

13This feature resulting from the information environment in my model is consistent with the findings
in Blickle, Brunnermeier, and Luck (2024), who highlight depositors’ inability in perfectly differentiating
between banks during episodes of panic runs. In particular, they study run on the German banking system
in 1931 and find no difference in total deposit outflows between failing and surviving banks.
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t t+1

• issue equity et

• issue deposits dt

• invest in projects abt
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• ιt+1 realized

• panic runs if ιt+1 = 1

• ωj , zt+1 realized

• physical capital produced

• project returns realized

Figure 1. Timing

An aggregate sunspot process determines the coordination of alert depositors in the panic

equilibrium in i.i.d. manner over time but perfectly correlated across vulnerable banks.

Specifically, let ιt be a binary sunspot variable that takes on a value of 1 with an exogenous

probability ε and a value of 0 with probability 1− ε. When ιt+1 = 1, alert depositors coordi-

nate to (partially) withdraw their deposits from the vulnerable banks. Figure 1 summarizes

the timing of events. Below, I elaborate further on alert depositors’ run-incentives.

Fundamental failures. Let πι
st+1 denote the terminal net worth at t + 1 of a bank

conditional on its exposure to the idiosyncratic shocks and the realization of the aggregate

sunspot shock. Then, when ιt+1 = 0,

π0
0t+1(ωj) = ωjR

b
t+1a

b
t −Rd

t dt − C(mt)a
b
t , (9)

π0
1t+1 = Rb

t+1a
b
t −Rd

t dt − C(mt)a
b
t . (10)

A bank is fundamentally insolvent if its portfolio returns at t + 1 are insufficient to pay

the promised repayment in full, i.e., its terminal net worth is negative. To simplify the

exposition, I assume that parameter values are such that in equilibrium π0
1t+1 > 0, so that a

bank not exposed to the idiosyncratic shocks never fails in the normal equilibrium.14 As for

a bank exposed to the shocks at t+ 1, Equation (9) can be used to define a threshold value

for ωj, ω̄
ι
t+1, below which the bank’s net worth is negative and it is therefore insolvent

ω̄0
t+1 =

Rd
t dt + C(mt)a

b
t

Rb
t+1a

b
t

. (11)

Thus, the probability with which a vulnerable bank (sj = 0) becomes insolvent if it does

not suffer a run is F (ω̄0
t+1), where F denotes the cumulative distribution function of the

14I will guess and verify that this assumption holds for every combination of parameters used in the
quantitative analysis.
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bank-idiosyncratic shocks.

By the law of large numbers, for any arbitrary risk management effort mt exerted at date

t, a fraction Mt+1 = mt of banks have sj = 1 and are immune to the idiosyncratic shocks ωj

at date t+1. Then, the aggregate proportion of banks that fail due to weak fundamentals is

D0
t+1 = (1−Mt+1)F (ω̄

0
t+1). (12)

Probability of self-fulfilling failures. Following Dávila and Goldstein (2023), I assume

that when the sunspot is realized (ιt+1 = 1), the proportion ζ of alert depositors consider

withdrawing the uninsured portion of their deposits at all their banks. Then, using the

notation introduced in (1), and denoting xt ≡ min
{

D
Rd

tDt
, 1
}

the insured share of deposits,

the investment to be liquidated by any bank that is subject to runs is

lt+1 = ζ(1− xt)R
d
t dt. (13)

Taking into account the liquidation costs λ introduced in Equation (1), the terminal net

worth of a bank conditional on sjt+1 = 0 and ιt+1 = 1 is

π1
0t+1(ωj) = ωjR

b
t+1

(
abt −

lt+1

1− λ

)
− [(1− ζ)(1− xt) + xt]R

d
t dt − C(mt)a

b
t

= ωjR
b
t+1

(
abt −

ζ(1− xt)R
d
t dt

1− λ

)
− [(1− ζ)(1− xt) + xt]R

d
t dt − C(mt)a

b
t . (14)

Equation (14) can be used to define the threshold value for ωj below which the exposed

banks experiencing a panic run turn insolvent

ω̄1
t+1 =

[(1− ζ)(1− xt) + xt]R
d
t dt + C(mt)a

b
t

Rb
t+1

(
abt −

ζ(1−xt)Rd
t dt

1−λ

) , (15)

which is lower than ω̄0
t+1 and strictly so unless deposits are fully insured (xt = 1). Thus,

the probability with which a vulnerable bank (sj = 0) ends up defaulting if it suffers a run

(ιt+1 = 1) is F (ω̄1
t+1), which, unless xt = 1, is strictly larger than the probability with which

it would default in the absence of a run, F (ω̄0
t+1).

Finally, guaranteeing that banks with sj = 1 are not vulnerable to runs requires that
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their terminal net worth in case they were experiencing a run is non-negative:

Rb
t+1

(
abt − lt+1

)
− [(1− ζ)(1− xt) + xt]R

d
t dt − C(mt)a

b
t ≥ 0, (16)

and a sufficient condition for this is having ω̄1
t+1 ≥ 1 (since λ > 0), which I guess and verify

to be true under the parameter values considered in the analysis below. Given the immunity

of sj = 1 banks to the sunspot, we eventually have π1
1t+1 = π0

1t+1, with the expression for

π0
1t+1 given by (10).

Then, the aggregate proportion of banks that fail when a sunspot is realized is

D1
t+1 = (1−Mt+1)F (ω̄

1
t+1), (17)

and, the proportion of bank failures due to self-fulfilling losses when the aggregate sunspot

shock realizes is

D1
t+1 −D0

t+1 = (1−Mt+1)
[
F (ω̄1

t+1)− F (ω̄0
t+1)

]
. (18)

A higher deposit insurance limit D̄ increases the share of insured deposits, xt, which

reduces the investment that needs to be liquidated conditional on runs (as seen in (13)).

Other things equal, this reduces the proportion of banks F (ω̄1
t+1) subject to panic-induced

failures.

2.5 Deposit insurance agency

The deposit insurance agency (DIA) supervises the liquidation process of failed-bank assets,

which is subject to proportional repossession costs µ.15 The funds recovered are first used

to meet its own obligations towards satisfying the deposit guarantees. The residual funds

(if any) are distributed among holders of uninsured deposits on a pro-rata basis. The DIA’s

slack in satisfying the deposit guarantee (if any) is met by raising lump sum taxes from

households to ex-post balance its budget. The DIA has to balance its budget period-by-

period. I denote the losses to the DIA at time t as Ψt. Following Dávila and Walther (2020),

the total lump sum tax Tt imposed on the households to balance the agency’s budget is

Tt = Ψt + τ(Ψt), (19)

15The model follows Bernanke, Gertler, and Gilchrist (1999) in adopting a “costly state verification”
setup, by which the DIA / banks’ depositors must incur a cost that is proportional to the assets of the bank
in order to observe the realization of the idiosyncratic shocks ω.
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where τ(·) is a weakly increasing and convex function that satisfies τ(0) = 0 and

limΨ→∞ τ(Ψ) = ∞. A detailed expression for Ψ is provided in the Appendix A.

2.6 The problem of the bank

Banks maximize the net present value of the equity that bankers invest in them. Prior to the

analysis of the banks’ decision problem, it is useful to first discuss the solution to bankers’

optimization problem in (5)-(6).

Following Abad et al. (2024), I guess and verify that a banker’s value function is an

affine function of her net-worth. It involves a linear term vtn
b
t that implies a constant

marginal shadow value vt of the net worth under the banker’s management in period t, and

an intercept v0t which accounts for the extra value of the option to raise additional funds

from the household (at a convex cost). The marginal shadow value of each unit of nb
t satisfies

vt = Et

[
Λt+1(1− θ + θvt+1)R

e
t+1

]
. (20)

Equation (20) defines the bankers’ stochastic discount factor as Λb
t+1 = Λt+1(1− θ + θvt+1),

where Λt+1 is the stochastic discount factor of the household on whose behalf the banker

manages investments in bank equity, and the term (1− θ+ θvt+1) accounts for the marginal

value vt+1 ≥ 1 of the net worth that bankers can retain under their management at t + 1.

Whenever vt+1 > 1, retained equity returns have extra value to bankers as they avoid

incurring the equity issuance costs captured by the function Υ(·). The remaining details of

the banker’s problem are provided in Appendix A.

Banks’ optimization problem. Banks operate under limited liability, which means

that the equity payoffs generated by a bank at time t + 1 are given by the positive part of

the difference between the returns from its assets and the repayments due to its depositors,

net of the risk management effort costs. If the returns from the assets are greater than the

repayments, the difference is paid back to the bank’s equity holders. Otherwise, the bank’s

equity is written down to zero and its assets are repossessed by the DIA. Using the notation

introduced above, the problem of the bank can be compactly written as

Et

{
Λb

t+1

[
mt max{πι

1t+1, 0}+ (1−mt)max{πι
0t+1, 0}

]}
− vtet, (21)

subject to the balance sheet constraint, and the minimum capital requirement. The bank’s

objective function in (21) reflects that the equity et is valued at its equilibrium opportunity
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cost vt. Additionally, the presence of vt+1 in Λb
t+1 reflects that, other things being equal, equity

returns generated by the bank when vt+1 is relatively high are more valuable to the banker

than those generated when vt+1 is relatively low. This produces what Abad et al. (2024) call

a scarce-bank-equity-preservation effect, which reduces banks’ risk taking incentives (relative

to static formulations of banks’ systemic risk-taking).

The first order condition with respect to the choice of risk management effort is

Et

{
Λb
t+1

[
πι1t+1 −max{πι0t+1, 0}

]}
= Et

{
Λb
t+1

[
mtC′(mt)a

b
t − (1−mt)

∂max{πι0t+1, 0}
∂mt

]}
, (22)

where the term on the left hand side reflects the expected discounted increase in payoffs

generated from a marginal increase in risk management effort, and the term of the right

hand reflects the expected discounted increase in effort costs.

Equation (22) sheds light on the main drivers of banks’ risk choices. On the one hand, a

marginal increase in risk management effort reduces the likelihood of being exposed to the

idiosyncratic shocks. Conditional on being in normal times – absent panic runs but including

normal expansions and recessions – this yields a higher expected amount of physical capital

(and therefore asset returns), since E(ωj) ≤ 1. Conditional on the realization of sunspot, this

also increases the bank’s probability of avoiding early liquidation of investments to satisfy

deposit withdrawals. To the extent that aggregate bank equity is scarcer and therefore more

valuable conditional on panic runs, the term Λb
t+1 further introduces an incentive for the

bank to generate higher equity returns in this state. On the other hand, lower effort allows

saving on risk management costs and, exposure to idiosyncratic shocks allows the bank to

enjoy higher upside risk.

The main (direct) effect of higher deposit insurance is the increase in max{π1
0t+1, 0}, i.e.,

the expected payoffs conditional on both the realization of aggregate sunspot (ι = 1) and

being exposed to the bank-idiosyncratic shocks (sj = 1). This reduces the bank’s incentives

in exerting risk management effort. Importantly, the forward-looking force captured by Λb
t+1

amplifies the reduction in incentives, since the gains from being a surviving bank are lower

when bank-runs cause lower net worth losses in the aggregate.

2.7 Equilibrium

A competitive equilibrium is given by some price functions determining prices in each state of

the economy as well as the policy functions of the households, the banks, the representative
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non-bank-dependent firm, and the representative consumption-good producing firm, such

that, given a sequence of shocks, the sequence of each of the agents’ decisions solve their

corresponding optimization problems, the sequence of prices clears all markets, and the

sequence of endogenous state variables satisfies their corresponding laws of motion. A formal

definition of the competitive equilibrium, together with the complete set of optimality and

market clearing conditions, is provided in Appendix A.

3 Quantitative analysis

This section introduces the functional forms chosen for the numerical analysis, and presents

the baseline parameterization. It then discusses the quantitative fit of the model by looking at

its business-cycle properties, and explores the endogenous responses in the baseline economy

to the realization of a sunspot shock. All data used in the quantitative analysis is publicly

available. To account for the non-linearities associated with the possibility of panic runs, I

rely on a global numerical solution method. Details of the solution method are in Appendix

B.

3.1 Functional forms and shock processes

In the quantitative analysis below, the functional form chosen for the utility function of the

household is

U(Ct) =
C1−ν

t − 1

1− ν
, (23)

with constant risk-aversion parameter ν. The production function of the consumption-good

producing firm is Cobb-Douglas with

G(Kh
t , K

b
t , Ht) = K(Kh

t , K
b
t )

αH1−α
t , (24)

where α ∈ (0, 1) and K(Kh
t , K

b
t ) is a physical capital composite

K(Kh
t , K

b
t ) = [ϕ(Kh

t )
ρ + (1− ϕ)(Kb

t )
ρ]

1
ρ , (25)

with ϕ ∈ (0, 1) and ρ > 0, that features a constant elasticity of substitution 1/(1−ρ) between
the physical capital produced by non-bank dependent firms Kh and that produced by bank
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dependent firms Kb. The cost of risk management effort is specified as

C(mt) =
κ

2
(mt)

2 , (26)

with κ > 0, which satisfies the properties stated in the model section. Following Dávila and

Goldstein (2023), the marginal cost of public funds is specified as

τ(Ψt) =
τ1
τ2

(
eτ2Ψt − 1

)
, (27)

for which the parameter τ1 = τ ′(0) represents the marginal cost of public funds for a small

intervention and the parameter τ2 = τ ′′(Ψ)/τ ′(Ψ) modulates how quickly the cost of public

funds increases with Ψ. The cost of raising new equity is specified as

Υ(b+t ) =
υ

2

(
b+t
)2
, (28)

with υ > 0, which satisfies the properties stated in the model section. The aggregate

productivity shock obeys the following first-order process

log(zt) = ρz log(zt−1) + σzϵt, (29)

with ρz ∈ (0, 1), σz > 0, and where ϵt is normally distributed with mean zero and variance

one. The bank-idiosyncratic shocks are log-normally distributed

log(ω) ∼ N
(
−σω − ψ

2
, σ2

ω

)
, (30)

with σω > 0 and ψ > 0.

3.2 Mapping the model to the data

The model is calibrated to quarterly US data from 1984 Q1 to 2006 Q4. The calibrated

parameters – 21 overall – can be divided into two groups. The first group consists of twelve

parameters, mainly related to household preferences, production sector, and the social costs

of bank failures. They are chosen to either directly match with their data counterpart, or

set to commonly agreed values in the business-cycle literature and related macro-banking

papers. The remaining nine parameters in the second group are mainly those governing the

behaviour of the banking sector, and hence are specific to my model. They are jointly set
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Table 1
Pre-set parameters

Parameter Value Source

β Impatience 0.99 Standard
ν Risk Aversion 2 Standard
α Output elasticity of capital 0.33 Standard
δ Depreciation rate of capital 0.025 Standard
ρz Persistence of TFP shock 0.95 Standard
γ Capital requirement 0.08 BCBS (2004)
ε Sunspot Probability 1% Jamilov et al. (2024)
ζ Fraction of alert depositors 5% Iyer and Puri (2012)
λ Early liquidation costs 0.45 BCBS (2004)
µ Bank default costs 0.30 Bennett and Unal (2015)
τ1 Marginal cost of small intervention 0.13 Kleven and Kreiner (2006)
ψ Risk taking losses 0.006 Begenau (2020)

to match model implied moments to several data targets. Given that my policy functions

are non-linear, I obtain model implied moments by simulating my economy for one hundred

thousand periods16

Table 1 and Table 2 respectively list the values assigned to all first and second group

parameters in the baseline calibration, and summarize their corresponding sources or data

targets. Table 3 provides the values of moments targeted in the data and compares them to

their model generated counterparts. In what follows, I discuss the rationale for my choices

in the calibration exercise.

Pre-set parameters. The subjective discount rate β is set to a standard 0.995, deliver-

ing an annual risk-free rate around 2%. The household’s risk-aversion parameter ν is set to

2, which is a value traditionally used in macroeconomics. The output share α of the physical

capital composite K is set to a standard 0.33 and the depreciation rate δ of physical capital

is set to a standard 0.025, delivering an annual rate around 10%. I take the persistence pa-

rameter ρz of the aggregate productivity process from the business-cycle literature that uses

a value of 0.95.

The minimum capital requirement γ is set to 8%, consistent with the general requirement

under Basel II (BCBS, 2004; part 2.I, paragraph 40) as well as its Basel I predecessor. The

probability of observing a sunspot ε is set at 1%, implying an average frequency of banking

panics of once every 25 years, which is in line with the evidence reported in Jamilov et al.

16As I am excluding the financial crisis from the sample, the sunspot variable is set to zero in these
simulations.
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Table 2
Calibrated parameters

Parameter Value Target

D Deposit insurance limit 5.2 Share of insured deposits
θ Earnings retention rate 0.96 Return on bank equity
υ Marginal cost, equity issuance 135 Bank equity issuance
κ Marginal cost, risk management effort 0.008 Volatility, return on equity
ϕ Non-bank-dependent share in capital 0.51 Bank/non-bank ratio
ρ Substitution parameter capital composite 0.49 Volatility, share of insured deposits
τ2 Slope of tax function 48 Marginal cost of public funds
σω Standard deviation of idiosyncratic shocks 0.031 Bank failure rate
σz Standard deviation of TFP shocks 0.3% Standard deviation of output

(2024) and coincides with the target for the frequency of banking panics set by Gertler et al.

(2020). The proportion of alert depositors ζ is set to 5%, in line with the evidence in Iyer

and Puri (2012) based on depositor-level data, and coincides with the value chosen for the

proportion of early depositors in Dávila and Goldstein (2023).17

The value of the early-liquidation loss parameter λ is set to 0.45, consistent with the loss-

given-default (LGD) parameter of 45% that the foundation approach of Basel II (BCBS,

2004 paragraph 287) fixed for senior corporate loans without specific collateral. The value

of bankruptcy parameter µ is set equal to 0.3, consistent with the 30% average discounted

total resolution cost per unit of assets estimated by Bennett and Unal (2015) using FDIC

data from failed banks in the period 1986-2007.18 Following Dávila and Goldstein (2023),

the marginal cost of public funds for a small intervention, captured by τ1, is set equal to

0.13 consistent with the estimate in Kleven and Kreiner (2006). Finally following Begenau

(2020), the compensation for exerting effort in proper risk management of an investment

project, governed by the parameter ψ, is set such that 1− E(ωj) = 0.32% per quarter.19

Calibrated parameters. The second group of parameters are calibrated so as to si-

multaneously match the targets listed in Table 3. Each parameter can be mainly associated

with one target, as a indicated in the last column of Table 2.

The limit on deposit insurance D̄ is set to match an average share of insured deposits of

17See also Kelly and Gráda (2000) who document withdrawals by a similar fraction of depositors during
the bank run on Emigrants Industrial Savings Bank that occurred in 1854.

18See also Granja, Matvos, and Seru (2017), who estimate a recovery rate on bank assets after failure of
72%.

19In particular, Begenau (2020) obtains this spread by computing the average pretax excess return on
the aggregate loan portfolio of banks relative to a maturity and credit-matched replicating portfolio based
on investment-grade corporate bonds from Vanguard.
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Table 3
Calibration targets and model fit

Target Description Data Model

E(x) Share of insured deposits (%) 66.8 66.6
E(Ab/Ah) Bank/non-bank ratio (%) 85.9 86.2
E(Re) Return on bank equity (%) 12.98 13.06
E(b/N b) Bank equity issuance (%) 5.36 5.44
E(D0) Bank failure rate (%) 0.76 0.76
E(τ(·)) Marginal cost of public funds 0.15 0.15
std(Re) Volatility, return on equity (p.p.) 1.22 0.59
std(x) Volatility insured shared of deposits (p.p.) 0.97 0.71
std(Y ) Volatility output (p.p.) 0.98 1.03

Return on bank equity, equity issuance, and bank failure rates are reported in
annualized percentage points. The standard deviations (std) of return on equity,
insured share of deposits, and output are reported in quarterly percentage points.

about 67% at US banks in the period 1984-2006. The bankers’ wealth retention rate θ is set

to 0.956 to match the about 13% average real return on average equity. The marginal cost

of equity issuance υ is set to 142. It targets U.S. banks’ average annual real equity issuance

of about 5.36% of pre-existing equity.

The share of non-bank-dependent physical capital in the physical capital aggregator, ϕ,

is fixed to match the about 86% bank to non-bank financing ratio in the economy, which

is obtained following the same procedure as in De Fiore and Uhlig (2011).20 The value

of the elasticity of substitution parameter in the physical capital aggregator, ρ, and the

marginal cost of risk management effort, κ, are jointly set to match (i) volatility of return

on bank equity; (ii) volatility of the share of insured deposits. The parameter τ2, governing

how quickly the cost of public funds increases with taxes, is set to 48, to match an average

marginal cost of public funds of 0.15 as in Dávila and Goldstein (2023). The standard

deviation of bank-idiosyncratic shocks σω is set to match the average annualized bank default

rates in U.S. of around 0.76%. Finally, the standard deviation of the aggregate productivity

shocks σz is set to match the volatility of real GDP.

20In particular, I identify such a ratio with the ratio of corporate loans to corporate securities, which is
calculated using the liability and equity items in balance sheet of non-financial corporate businesses reported
in the US Flow of Funds Accounts (Table B.103). Securities are the sum of commercial paper, municipal
securities and corporate bonds. Loans are the sum of bank loans, mortgages and other loans and advances.
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Figure 2. Risk taking in the data and the model

Notes: The empirical proxy for risk taking is the time series of the fraction of banks tightening their lending

standards that is published in the “Senior loan officer opinion survey on bank lending practices” by the

Federal Reserve Board. Data corresponds to 1990 Q2 - 2006 Q4. The right panel reports a model simulated

time series for an equal time span (67 quarters).

3.2.1 Business-cycle properties

In this subsection, I discuss the quantitative performance of the model by looking at its

business-cycle properties.

Banks’ choice of risk management effort is an important source of endogenous risk-taking

in my model. As it is private information of the bank, there is no direct counterpart in

the data to draw comparisons. Nonetheless, to study the business-cycle behaviour of banks’

risk-taking, I rely on an empirical proxy based on the “Senior loan officer opinion survey on

bank lending practices” (SLO) published by the Federal Reserve Board.21,22 The two panels

of Figure 2 provide an account of the dynamics of banks’ risk taking over the business-cycle

in the data (left panel) and in the model (right panel). The left vertical axis in the data

panel reports log deviation of real GDP from its (HP-filtered) trend. The right vertical

axis reports a standardized measure of the net share of banks that tighten their lending

standards – normalized around 0 and ranging between [−1, 1] – published each quarter by

the Fed Board. Data corresponds to the period between 1990 Q2 - 2006 Q4. The left and

21The survey is administered by senior staff at the Federal Reserve Banks with knowledge of bank lending
practices. As stated on the Board’s website, “the purpose of the survey is to provide qualitative and limited
quantitative information on bank credit availability and loan demand, as well as on evolving developments
and lending practices in the U.S. loan markets.”

22See Maddaloni and Peydró (2011), who study the effect of monetary policy on lending standards. They
provide evidence attributing softening in standards to banks’ risk-shifting.
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right vertical axes in the model panel respectively report % deviation of output and banks’

risk management effort from their respective means.

While the empirical proxy does not allow for a quantitative comparison of magnitudes, the

model captures the strong procyclicality in banks’ incentives for risk taking. This means that

banks relax lending standards during booms and tighten them during a recession, consistent

with the findings on banks’ risk taking behavior in Martinez-Miera and Suarez (2014).

Table 4
Business-cycle correlations

(untargeted)

Variable Data Model

Deposits 0.40 0.81
Insured share of deposits -0.57 -0.81
Equity 0.16 0.81
Equity issuance -0.11 -0.15
Return on equity 0.29 0.35
Bank/non-bank ratio 0.42 0.69

The data are the ratio of HP-filtered cycle com-
ponent of the logged variable to the HP-filtered
trend of GDP.

Table 4 summarizes the business-cycle correlations of the model’s banking sector and

compares them to the data. The model generates realistic business-cycle correlations of

banks’ capital structure, the return on equity they generate, and their share of financing

the production of physical capital in the economy. Without being a calibration target, the

model captures well the countercyclicality of the share of insured bank deposits, as well as

banks’ equity issuance.

3.3 Banking panics in the baseline economy

Figure 3 shows the response of key aggregate variables to the realization of a sunspot shock in

the baseline economy. For illustrating the effects of panic runs, I suppose that the economy

is initially in a risk-adjusted steady state.23 At t = 0, the aggregate sunspot shock is realized

(i.e., ι0 = 1) and then not again during the subsequent periods (i.e., ιt = 0 for t ≥ 1). Upon

the arrival of the sunspot, alert depositors coordinate to run on the vulnerable banks (those

exposed to the idiosyncratic shocks), forcing early-liquidation of their investments. In the

baseline economy, 0.8% banks fail during a panic, compared to 0.19% during normal times.

23This strategy to isolate the effects of sunspot-induced runs closely follows Gertler et al. (2020).
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Figure 3. Endogenous responses to panic runs in the baseline economy

Vertical axes: deviations from the risk-adjusted steady state (units as indicated). Horizontal axes: quarters

since the realization of the shock. The realization of the sunspot shock is set to zero for a sufficiently large

number of quarters before t = 0, set to one at t = 0, and again to zero for the remaining number of displayed

quarters.

The panics cause, on impact, a loss of about 14% of bank-dependent assets, a fall in output

of 0.4%, and bank equity losses of about 11%. The depletion in net worth under bankers’

management provokes a reduction in bank credit (bank dependent investment), which largely

explains the fall in output also in the second quarter (with the fall at t = 1 exceeding that

at t = 0).

The net worth under bankers’ management and, thus, bank equity, bank credit, and

output gradually recover from t = 1 onwards. The fall in consumption is very significant

and persistent, exceeding the fall in output because of the wealth destruction effect of the

shock. The household also suffers the taxes needed to cover the deposit insurance costs

as well as the consequences of the credit crunch (including, below normal wage income

throughout the recovery path). Until banks fully recover their pre-crisis equity levels, the

economy features reduced leverage (a low credit to GDP ratio) and a low bank to non-bank

ratio.
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Figure 4. Effects of deposit insurance on selected equilibrium variables

Vertical axes: stochastic steady state values (solid blue lines) and unconditional mean values (dashed red

lines); in levels, unless indicated otherwise. Horizontal axes: different values of the insured share of deposits

x implied under various limits of deposit insurance D̄.

4 The effects of deposit insurance

Having quantified the implications of a systemic sunspot panic episode in the baseline econ-

omy, I now perform counterfactual exercises. I analyze the effects of setting the deposit

insurance limit D̄ at different levels. In Figure 4, after solving for the equilibrium under

each of the values of D̄ in a grid varying from zero to a level that implies full deposit insur-

ance (i.e., x = 1), I depict the stochastic steady state (SSS) levels of the same key variables

previously described in Figure 3.24

The left bottom panel of the figure shows the strong negative effect of deposit insurance

on banks’ risk management effort (mt). While with no insurance roughly 53% of banks

are exposed to idiosyncratic shocks in the SSS (1 − M), with 50% insurance coverage the

proportion of exposed banks rises to 63%, and with full coverage to about 69%. The decline

24I refer to stochastic steady state as the state attained after sufficiently many periods without the
realization of a sunspot shock.
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in risk management effort is accompanied by increasing risk of fundamental insolvencies.

The aggregate proportion of banks failing in normal times (absent panics) increases from

0.16% with no insurance, to 0.21% under full insurance coverage. The associated deadweight

costs of bank failures and increase in taxes needed to cover deposit insurance costs largely

explains the decline in consumption. At the same time, the economy features increased

leverage (a high credit to GDP ratio) and a higher bank to non-bank financing ratio from

increasing deposit insurance coverage. This explains the increase in output and can be largely

attributed to the decline in banks’ funding costs (as deposits become cheaper).

The effects of deposit insurance on the unconditional means are depicted in dotted red

lines. In stark contrast to the effects in the SSS, unconditional mean of bank failures is U-

shaped in the level of deposit insurance. The reason is as follows. With no deposit insurance,

conditional on a sunspot, the aggregate proportion of banks failing is about 7%. With even

50% insurance coverage, this falls to almost 1%. The large declines in panic-induced failures

explains the sharp initial decline in the unconditional mean of bank failures from increasing

deposit insurance. With further raises in the coverage, the increasing risk of fundamental

insolvencies eventually dominates. Notably, the unconditional mean of consumption is hump-

shaped in the level of deposit insurance coverage.

Figure 5 and Table 5 shed light on the reasons for the divergence between unconditional

means and SSS values from increases in deposit insurance coverage reported in Figure 4. In

particular, Figure 5 shows the responses of key aggregate variables to the realization of a

sunspot shock under different coverage levels of deposit insurance. The effects of increasing

insurance on the severity of panic episodes are seen to be large. In the baseline economy

(with a 67% share of insured deposits), credit-to-GDP declines by 12 percentage points

(p.p.) on impact, in contrast to 30 p.p. fall in an economy without insurance. In the four

years subsequent to a banking panic in the baseline economy, the average cumulative losses

in output and consumption are 4.4% and 4.3%. Instead in the economy without deposit

insurance, the losses are 14.7% and 15.4%, respectively.

Table 5 reports the unconditional means of key macroeconomic and banking returns and

ratios, as well as the “on impact” implications of the realization of the sunspot panic event.

In the baseline economy, the wedge between the realized return on bank-dependent and non-

bank-dependent assets widens from 0.39% to 0.75% in the run period. This contrasts with

an increase from 0.46% to 0.95% in the economy with no insurance, evidencing sizable effects

of deposit insurance in alleviating ex-post capital misallocation. The stabilizing effects of

deposit insurance in run periods highlighted above come at the expense of an increase in
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Figure 5. Effects of deposit insurance on endogenous responses to panic runs

Vertical axes: deviations from respective stochastic steady state (units as indicated). Horizontal axes:

quarters since the realization of the shock. The realization of the sunspot shock is set to zero for a sufficiently

large number of quarters before t = 0, set to one at t = 0, and again to zero for the remaining number of

displayed quarters.

costs incurred by the deposit insurance agency. As shown in Table 5, the taxes raised by the

DIA for satisfying the deposit guarantees amount to 0.32% of GDP in the baseline economy.

4.1 Welfare-maximizing deposit insurance coverage

Figure 6 shows the impact of deposit insurance coverage on social welfare, which I define

as the unconditional mean value of the lifetime utility of the representative household and

report in certainty-equivalent permanent consumption terms.25 The welfare-maximizing level

of deposit insurance coverage is around 60%, which is slightly lower than the level in baseline

calibration (=67%).

In terms of unconditional mean values, the optimal deposit insurance generates, relative

25For each depicted x (more precisely for each D̄ corresponding to depicted x), I solve for equilibrium
and simulate 500 paths of 10000 periods, computing household’s lifetime utility W using (3). After obtain-
ing E(W ) by averaging W across the 500 paths, I compute the associated certainty-equivalent permanent
consumption as U−1((1− β)E(W )).
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Table 5
Endogenous variables under baseline and no deposit insurance

Baseline DI (x=67%) No DI (x=0%)

Unc. Run Unc. Run
Level variables mean period % diff. mean period % diff.

Bank-dependent assets (Credit) 8.45 7.39 -12.5 8.16 5.72 -29.9
Non-bank-dependent assets 9.88 10.85 9.8 9.94 12.14 22.1
Bank equity 0.68 0.59 -13.2 0.65 0.46 -29.2
Wages 1.359 1.353 -0.44 1.353 1.333 -1.48

Unc. Run Unc. Run
Returns and ratios (%) mean period p.p. diff. mean period p.p. diff.

Return on assets, class b 0.89 1.13 0.24 0.96 1.66 0.70
Return on assets, class h 0.50 0.38 -0.12 0.50 0.25 -0.25
Deposit insurance cost / GDP 0.32 1.46 1.14 0.001 0.03 0.029
Taxes deadweight cost / GDP 0.09 0.61 0.52 0 0 0
Repossession cost / GDP 0.234 0.98 0.74 0.264 8.38 8.12

This table reports relevant model variables under the baseline deposit insurance coverage (x) and no de-
posit insurance, as well as their variation across the two scenarios. Unc. mean refers to the unconditional
mean of the variable obtained from simulating the model for 150000 periods with the possibility of panic
runs. Run period refers to the response of the variable in the period in which a run materializes.

to no deposit insurance, social value equivalent to 7 bps of consumption. To put the size of

this gain into perspective, one has to take into account that panic episodes are infrequent

(occur with an annual frequency of 4%) and that the large direct and indirect losses that

are avoided conditional on the realization of panics are traded off with the negative effects

induced over calm periods.

4.2 The role of depositors’ alertness

During episodes of panic, the size of investment to be liquidated by any vulnerable bank is

increasing in its proportion of depositors ζ which are alert (see Equation (13)). How would

a change in alertness of depositors, for instance due to technological or demographic factors,

affect the optimal coverage of deposit insurance? Table 6 presents the results of the model

for two different levels: ζ = 10% and ζ = 3%. The baseline calibration sets ζ = 5% based

on available evidence. This table presents the optimal coverage of deposit insurance x under

these alternative calibrations of ζ in column 1 and the change from the average level of

selected variables under x = 67% to the new average level under the new optimal coverage

of deposit insurance in columns 2-9.
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Figure 6. Effect of the deposit insurance coverage on social welfare
Vertical axis: welfare of the representative household expressed in terms of certainty-equivalent permanent
consumption units. Horizontal axis: different values of the insured share of deposits x implied under
various limits of deposit insurance D̄. Social welfare is computed over 500 simulated paths, each comprised
of 10000 periods, for each different value of x.

A greater proportion of depositors being alert and coordinating a run on the vulnerable

banks means that a larger amount of investment has to be early-liquidated, and more severe

are the macroeconomic losses during panic episodes. As a consequence, the deposit insurance

agency can optimally increase the limit D̄ to guarantee a larger share of deposits (73% versus

58%) in order to reduce run-incentives, while incurring higher costs in satisfying deposit

obligations due to fundamental bank insolvencies. The reverse logic applies for low levels of

depositor alertness.

4.3 The role of capital requirements

Capital requirement in the model serve as a buffer to help banks absorb losses. The implica-

tions of higher or lower levels of requirements for the optimal coverage of deposit insurance

are non-trivial. Both deposit insurance and capital requirements enhance bank stability,

suggesting a degree of substitutability between the two. At the same time, higher deposit

insurance exacerbates the moral hazard problem – reduces bank’s incentives to exercise

proper risk management – which may be addressed with a higher capital requirement.

Table 7 presents the results of the model for two different levels of capital requirement:

γ = 6% and γ = 10%. The baseline calibration sets γ = 8%, consistent with the general
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Table 6
Implications of depositors’ alertness ζ for optimal deposit insurance

Change in variable from x = 67% to xoptimal

Optimal x Y C m D0 D1 T/Y DW-T DW-R
1 2 3 4 5 6 7 8 9

in % in levels in p.p.

ζ = 5% 58% -0.06 0.007 0.02 0.0002 0.31 -0.06 -0.001 -0.03
ζ = 3% 41% -0.12 0.02 0.02 0.0003 0.39 -0.13 -0.005 -0.06
ζ = 10% 73% 0.08 0.011 -0.02 -0.0007 -0.54 0.06 0.003 0.03

x denotes the insured share of deposits; Y denotes GDP; C denotes consumption; m denotes banks’
risk management effort; D0 denotes quarterly rate of fundamental bank failures; D1 denotes bank
failure rates during panic episodes; T/Y denotes tax to GDP ratio; DW-T denotes deadweight costs
of taxes as a fraction of GDP; DW-R denotes deadweight costs incurred in repossessing failed-bank
assets, as a fraction of GDP. Column 1 shows the optimal coverage of deposit insurance under different
values of ζ. Columns 2-9 list the change for selected variable when moving from the baseline insurance
coverage to the economy with optimal deposit insurance.

requirement under Basel II. The first column presents the optimal coverage of deposit in-

surance x under these alternative capital requirements. Columns 2-9 present the change

in the selected variable when moving from the baseline insurance coverage to the economy

with optimal deposit insurance. The findings suggest that deposit insurance and capital

requirements are complements. The reason is as follows. For low levels of capital require-

ment, banks’ loss-absorbing capacity is limited and they face a higher risk of failure due to

both fundamental weakness and panic-induced runs. The social costs of public funds for

interventions are very large to justify the stability induced with a higher coverage of deposit

insurance. The reverse logic applies for high levels of capital requirement.

5 Conclusions

I have developed a quantitative dynamic general equilibrium model with banks to study the

effects of deposit insurance. The model incorporates the possibility of both fundamental-

based and panic-based bank failures, and features endogenous and exogenous sources of

risk. Starting with a baseline calibration intended to capture key balance sheet and income

statement moments from banks, I have run counterfactual exercises exploring the effects of

setting deposit insurance coverage at different levels.

I find a U-shaped relationship between the level of deposit insurance coverage and the

risk of bank failure. This finding is the result of a large decline in panic-induced failures from
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Table 7
Implications of capital requirement γ for optimal deposit insurance

Change in variable from x = 67% to xoptimal

Optimal x Y C m D0 D1 T/Y DW-T DW-R
1 2 3 4 5 6 7 8 9

in % in levels in p.p.

γ = 8% 58% -0.06 0.007 0.02 0.0002 0.31 -0.06 -0.001 -0.03
γ = 6% 14% -0.59 0.21 0.10 0.01 7.73 -0.71 -0.03 -0.36
γ = 10% 78% 0.05 0.02 -0.02 0.0006 -0.13 0.02 0.0005 0.009

x denotes the insured share of deposits; Y denotes GDP; C denotes consumption; m denotes banks’
risk management effort; D0 denotes quarterly rate of fundamental bank failures; D1 denotes bank
failure rates during panic episodes; T/Y denotes tax to GDP ratio; DW-T denotes deadweight costs
of taxes as a fraction of GDP; DW-R denotes deadweight costs incurred in repossessing failed-bank
assets, as a fraction of GDP. Column 1 shows the optimal coverage of deposit insurance under
different values of capital requirement γ. Columns 2-9 list the change for selected variable when
moving from the baseline insurance coverage to the economy with optimal deposit insurance.

increasing the level of coverage when starting from low levels, which is eventually dominated

by increasing risk of fundamental insolvencies from a weakening of banks’ risk management

incentives. The welfare-maximizing level of deposit insurance coverage for the U.S. in 2008

– roughly 60% of aggregate deposits insured by U.S. FDIC – aligns closely with the level

observed in the data. This level weighs less severe deadweight costs and macroeconomic

losses during the infrequent episodes of bank panics against higher deadweight costs due to

fundamental bank insolvencies in normal times.

The model delivers novel insights into determinants of optimal deposit insurance. I find

that an increase in depositor alertness—driven by technological, demographic, or regulatory

factors—may warrant a moderate increase in deposit insurance coverage. Stronger capital

requirements or greater fiscal capacity may further justify higher coverage.
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Anginer, D. and A. Demirgüç-Kunt (2018): “Bank runs and moral hazard: A review

of deposit insurance,” World Bank Policy Research Working Paper.
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Appendices

A Model Details

This Appendix describes the details of the equilibrium.

A.1 Producers

Total physical capital at t+ 1 is given by

Kt+1 =
[
ϕ
(
Kh

t+1

)ρ
+ (1− ϕ)

(
Kb

t+1

)ρ] 1
ρ . (A.1)

The consumption-good producer combines physical capital and labor to produce the final

output (GDP)

Yt+1 = zt+1K
α
t+1H

1−α
t+1 . (A.2)

The consumption-good producer’s first order conditions for physical capital and labor yield

Rh
t+1 = ϕα

(
Kh

t+1

)ρ−1 Yt+1

Kρ
t+1

+ 1− δh, (A.3)

Rb
t+1 = (1− ϕ)α

(
Kb

t+1

)ρ−1 Yt+1

Kρ
t+1

+ 1− δb, (A.4)

Wt+1 = zt+1(1− α)

(
Kt+1

Ht+1

)α

. (A.5)

A.2 Household

The first order conditions for bank deposits and investments in physical capital are as follows:

Et

[
Λt+1R̃

d
t+1

]
= 1, (A.6)

Et

[
Λt+1R

h
t+1

]
= 1, (A.7)

where the stochastic discount factor of the household can be defined as

Λt+1 ≡ β

(
Ct+1

Ct

)−ν

,
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and the realized returns on deposits are

R̃d
t+1 = Rd

t − Ωt+1,

where Ωt+1 are the losses per unit of deposits defined below. The household’s insured share

of deposits are defined as xt ≡ min{ D
Rd

tDt
, 1}, and their budget constraint is given by

Ct+Dt+A
h
t = Wt+min{D̄, Rd

t−1Dt−1}+max{R̃d
tDt−1− D̄, 0}+Rh

tA
h
t−1+Ξt−Tt. (A.8)

A.3 Bankers

Plugging the law of motion of banker’s net worth given by (6) into (5) yields the following

compact version of a banker’s value function:

Vt(n
b
t) = max

bt≥−nb
t

{
−bt −Υ(b+t ) + Et

[
Λt+1(1− θ)Re

t+1

]
(nbt + bt) + Et

[
Λt+1Vt+1(θR

e
t+1(n

b
t + bt))

]}
.

(A.9)

Following Abad et al. (2024), I guess and verify that this value function is affine, namely,

can be expressed as

Vt(n
b
t) = vtn

b
t + v0t .

Under this conjectured expression for Vt(n
b
t), (A.9) can be written as

vtn
b
t + v0t = max

bt≥−nb
t

{
−bt −Υ(b+t ) + Et

[
Λb
t+1R

e
t+1

]
(nbt + bt) + Et

[
Λt+1v

0
t+1

]}
= Et

[
Λb
t+1R

e
t+1

]
nbt + max

bt≥−nb
t

{
−bt −Υ(b+t ) + Et

[
Λb
t+1R

e
t+1

]
bt + Et

[
Λt+1v

0
t+1

]}
,

(A.10)

with Λb
t+1 = Λt+1(1 − θ + θvt+1). The first term in the right side of (A.10) is linear in nb

t

and the second is independent of nb
t unless the lower bound for the choice of bt is binding

in any period. That is, if the banker faces a situation in which paying out the whole net

worth is strictly preferred to any other choice. This is the case if Et[Λ
b
t+1R

e
t+1] ≤ 1 so that

choosing bt = −nb
t < 0 is optimal and the RHS of (A.10) simplifies to nb

t + EtΛt+1v
0
t+1,

which is consistent with the conjectured affine form of the value function under vt = 1 and

v0t = EtΛt+1v
0
t+1. Now in the case that Et[Λ

b
t+1R

e
t+1] > 1, it is optimal for the banker to
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choose bt > 0 that satisfies the first order condition

−1−Υ′(b+t ) + Et(Λ
b
t+1R

e
t+1) = 0,

which does not depend on nb
t . So the validity of (A.10) gets confirmed with

vt = Et[Λt+1(1− θ + θvt+1)R
e
t+1], (A.11)

v0t = max
bt∈R

{
−bt −Υ(b+t ) + vtbt + EtΛt+1v

0
t+1

}
.

Therefore, the marginal value of a unit of banker’s net worth satisfies (20), and her optimal

policy for equity-issuance / discretionary-dividends is

bt =

any b ∈ [−nb
t , 0], if vt = 1,

(Υ′)−1(vt − 1), if vt > 1,
(A.12)

The net worth of bankers nb
t+1 evolves according to the following law of motion

nb
t+1 = θRe

t+1(n
b
t + bt). (A.13)

A.4 Banks

The problem of a bank is compactly written as

Et

{
Λb

t+1

[
mtπ

ι
1t+1 + (1−mt)

∫ ∞

ω̄ι
t+1

πι
0t+1(ωj)dF (ωj)

]}
− vtet, (A.14)

subject to the balance sheet constraint

abt = et + dt, (A.15)

and the regulatory capital requirement

et ≥ γabt , (A.16)
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where as described in the text

π0
0t+1(ωj) = ωjR

b
t+1a

b
t −Rd

t dt − C(mt)a
b
t , (A.17)

π0
1t+1 = π1

1t+1 = Rb
t+1a

b
t −Rd

t dt − C(mt)a
b
t , (A.18)

π1
0t+1(ωj) = ωjR

b
t+1

(
abt −

ζ(1− xt)R
d
t dt

1− λ

)
− [(1− ζ)(1− xt) + xt]R

d
t dt − C(mt)a

b
t , (A.19)

ω̄0
t+1 =

Rd
t dt + C(mt)a

b
t

Rb
t+1a

b
t

, (A.20)

ω̄1
t+1 =

[(1− ζ)(1− xt) + xt]R
d
t dt + C(mt)a

b
t

Rb
t+1

(
abt −

ζ(1−xt)Rd
t dt

1−λ

) . (A.21)

Combining the first order conditions with respect to the choices of dt and et yields

vt = ξCR
t + Et

{
Λb

t+1

[
mtR

d
t + (1−mt)R

d
t (1− F (ω̄ι

t+1))
]}
, (A.22)

where ξCR
t is the Lagrange multiplier associated with the regulatory capital requirement

(A.16). Equation (A.22) states that, in equilibrium, the marginal cost of an additional unit

of equity vt has to be equal to the marginal benefit of relaxing the regulatory requirement

constraint (A.16) plus the marginal cost of substituting that unit of equity with one unit

of deposits. This condition implies that the capital requirement constraint will be binding

(ξCR
t > 0) as long as

vt > Et

{
Λb

t+1

[
mtR

d
t + (1−mt)R

d
t (1− F (ω̄ι

t+1))
]}
,

that is, as long as the shadow price of bankers’ equity at t exceeds the effective cost of deposit

funding to bank shareholders (as given by the discounted value of the marginal repayments

and costs incurred per unit of deposits if the bank does not fail). Under binding capital

requirement (which I guess and verify), the first order condition with respect to investments

in (physical-)capital-producing projects is

Et

{
Λb
t+1

[
mt(R

b
t+1 − C(mt)) + (1−mt)

(∫ ∞

ω̄ι
t+1

(ωjR
b
t+1 − C(mt))dF (ωj)

)]}
= (1− γ)Et

{
Λb
t+1

[
mtR

d
t + (1−mt)R

d
t (1− F (ω̄ι

t+1))
]}

+ γvt, (A.23)

which states that, in equilibrium, bankers’ marginal benefit of an additional unit of invest-

ment has to be equal to the effective weighted average cost of the funds needed to finance

that investment.
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As described in the text, the first order condition with respect to the choice of risk

management effort is

Et

{
Λb
t+1

[
πι1t+1 −

∫ ∞

ω̄ι
t+1

πι0t+1(ωj)dF (ωj)

]}
= Et

{
Λb
t+1C′(mt)a

b
t

[
mt − (1−mt)(1− F (ω̄ι

t+1))
]}
.

(A.24)

The aggregate proportion of banks that fail is given by

Dι
t+1 = (1−Mt+1)F (ω̄

ι
t+1). (A.25)

A.5 Deposit insurance agency

As described in the text, the deposit insurance agency (DIA) supervises the liquidation

process of failed-bank assets, subject to proportional repossession costs µ. Let Σι
t+1 denote

the total losses incurred in repossessing assets of banks operating between t and t+1, given

by:

Σ0
t+1 = (1−Mt)

{
[Rd

tDt + C(mt)A
b
t ]F (ω̄

0
t+1)− (1− µ)Rb

t+1A
b
t

∫ ω̄0
t+1

0
ωjdF (ωj)

}
, (A.26)

Σ1
t+1 = (1−Mt)

{[
((1− ζ)(1− xt) + xt)R

d
tDt + C(mt)A

b
t

]
F (ω̄1

t+1)

− (1− µ)Rb
t+1

(
Ab

t −
ζ(1− xt)R

d
tDt

1− λ

)∫ ω̄1
t+1

0
ωjdF (ωj)

}
, (A.27)

where xt ≡ min
{

D
Rd

tDt
, 1
}

are the household’s insured share of deposits. As noted in the

text, the recovered funds are first used by the DIA to meet its own obligations.26 Then, the

DIA incurs a shortfall if it does not manage to recoup sufficient funds from liquidating the

assets of a failing bank, which is the case if the realization of idiosyncratic shocks is below

¯̄ω0
t+1 = min

{
xtR

d
tDt + C(mt)A

b
t

(1− µ)Rb
t+1A

b
t

, ω̄0
t+1

}
,

¯̄ω1
t+1 = min

 xtR
d
tDt + C(mt)A

b
t

(1− µ)Rb
t+1

(
Ab

t −
ζ(1−xt)Rd

tDt

1−λ

) , ω̄1
t+1

 .

26I assume for simplicity that the risk management effort costs of failing banks are borne by the DIA. This
assumption is consistent with real world regulations wherein uninsured depositors’ obligations are senior to
banks’ other liabilities.
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Using the notation introduced in text, the DIA’s total shortfall in period t+ 1 is then

Ψ0
t+1 = (1−Mt)

{
[xtR

d
tDt + C(mt)A

b
t ]F (¯̄ω

0
t+1)− (1− µ)Rb

t+1A
b
t

∫ ¯̄ω0
t+1

0
ωjdF (ωj)

}
, (A.28)

Ψ1
t+1 = (1−Mt)

{[
xtR

d
tDt + C(mt)A

b
t

]
F (¯̄ω1

t+1)

− (1− µ)Rb
t+1

(
Ab

t −
ζ(1− xt)R

d
tDt

1− λ

)∫ ¯̄ω1
t+1

0
ωjdF (ωj)

}
. (A.29)

The DIA’s slack is met by raising lump sum taxes from households to ex-post balance its

budget:

T ι
t = Ψι

t + τ(Ψι
t), (A.30)

where the functional form of τ(·) is given in (27).

Finally, residual funds from the subset ωj ∈ [ ¯̄ωι
t+1, ω̄

ι
t+1] of failing banks are distributed

among holders of uninsured deposits on a pro-rata basis. Therefore, total losses incurred by

depositors from investing in banks operating between t and t+ 1 are

Ωι
t+1Dt = Σι

t+1 −Ψι
t+1. (A.31)

A.6 Market clearing and aggregation

The physical capital of class h rented by the representative consumption-good producer

must equal the stock of physical capital produced by the representative non-bank-dependent

(NBD) firm

Kh
t+1 = Ah

t , (A.32)

which reflects the linear production technology of NBD firm (kht+1 = aht ), and that the claims

on physical capital of class h held by the households must equal the claims issued by the NBD

firm Ah
t = aht . The physical capital of class b rented by the representative consumption-good

producer must equal the stock of physical capital produced by banks

Kb
t+1 = abt − ιt+1 ·

∫ ω̄1
t+1

0

ζ(1− xt)R
d
t dt

1− λ
dF (ωj), (A.33)

which reflects that in the event of a sunspot (ιt+1 = 1), a fraction F (ω̄1
t+1) of the banks

early-liquidate investments. Labor hired by the representative consumption-good producing
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firm must equal the unit of labor inelastically supplied by the household

Ht = 1. (A.34)

The clearing of the market for bank deposits requires

Dt = dt. (A.35)

The equity issued by banks must equal the net worth invested by bankers’

et = nb
t + bt. (A.36)

The law of motion of aggregate net worth of bankers is given as

N b
t+1 = θRe

t+1(N
b
t + bt+1), (A.37)

which reflects the retention of a fraction θ of gross returns earned by a banker at t, and the

fact that aggregate net worth equals individual net worth N b
t = nb

t . The total net payments

that bankers make to the household are

Ξt+1 = (1− θ)Re
t+1et − bt+1 −Υ(b+t+1). (A.38)

The household’s net worth Nh
t+1 evolves according to the following law of motion

Nh
t+1 = Wt+1 + R̃d

t+1Dt +Rh
t+1K

h
t+1 + Ξt+1 − Tt+1. (A.39)

A.7 Equilibrium

In equilibrium, the state of the economy at any date t can be summarized by two state

variables collected in the vectorN = {Nh, N b} : the aggregate net worth of the representative

household Nh
t , and aggregate wealth under bankers’ management at the start of the period

N b
t . Formally:

Definition 1 A competitive equilibrium is given by the policy functions of the representa-

tive household
(
C(N), D(N), Ah(N)

)
, the representative banker (b(N)) , the representative

bank
(
ab(N), d(N), e(N),m(N)

)
, and the representative consumption-good producing firm(

Kh(N), Kb(N), H(N)
)
, a tuple of equilibrium prices

(
v(N), Rd(N), rh(N), rb(N),W (N)

)
,

and a sequence of lump-sum taxes Tt, all defined over some relevant support for N, such
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that for any sequence of realizations of the aggregate productivity shocks {zt}t=0,1,..., and the

aggregate sunspot shocks {ιt}t=0,1,... :

1. The sequence of consumption and saving decisions {Ct, Dt, A
h
t }t=0,1,... implied by (C(N),

D(N), Ah(N)) solve the problem of the representative household, i.e., equations (A.6)

to (A.8).

2. The sequences of dividend payments {b−t }t=0,1,... and equity issuance {b+t }t=0,1,... implied

by (b(N)) solve the problem of the representative banker, i.e., equation (A.12).

3. The sequence of capital structure decisions {abt , et, dt}t=0,1,... and risk management effort

{mt}t=0,1,... implied by
(
ab(N), d(N), e(N),m(N)

)
solve the problem of the representa-

tive bank, i.e., equations (A.15), (A.16), (A.23), and (A.24).

4. The sequence of input choices {Kh
t , K

b
t , Ht}t=0,1,... implied by

(
Kh(N), Kb(N), H(N)

)
solves the problem of the representative consumption-good producing firm, i.e., equa-

tions (A.3) to (A.5).

5. The sequence of prices {vt, Rd
t , r

h
t , r

b
t ,Wt}t=0,1,... implied by (v(N), Rd(N), rh(N), rb(N),

W (N)) clear the bank equity market, the bank deposits market, the physical capital

markets, and the labor market, i.e., equations (A.32) to (A.36).

6. The sequence of taxes {Tt}t=0,1,... satisfy the deposit insurance agency’s budget con-

straint, i.e., equation (A.30).

7. The sequence of endogenous state variables {Nh
t+1, N

b
t+1}t=0,1,... evolve according to their

respective laws of motion, i.e., equations (A.37) and (A.39).

B Solution Method

The model is solved using global solution methods. In particular, the method used is policy

function iteration (Coleman, 1990), also known as time iteration (Judd, 1998). Functions are

approximated using piecewise linear interpolation, as advocated in Richter, Throckmorton,

and Walker (2014). A sketch of the numerical solution procedure is as follows:

1. Discretize the state variables by creating an evenly spaced grid, covering the rele-

vant range of values each of them can take. The aggregate productivity shocks are

discretized using the method described in Rouwenhorst (1995).
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2. Select the set of policy functions. In this case, the variables chosen are Rd(N), Ah(N),

m(N), and v(N).

3. Specify an initial guess for the policy functions at each point i of the state space (note

that the size of the state space equals the product of all the state variable grid sizes)

and use them as candidate policy functions. In particular, the initial guess is chosen

to be equal to the deterministic steady state value of the selected variables.

4. For each point i of the state space, plug the candidate policy functions into the equi-

librium equations and calculate the value of the endogenous state variables at t+ 1.

5. Using the value of the endogenous state variables at t + 1, use linear interpolation to

obtain the value of the policy variables at t + 1 for each possible realization of the

exogenous state variables.

6. Using the value of the endogenous state variables and the policy variables at t+1, obtain

the value at t+1 of the remaining variables necessary to calculate time t expectations,

for each possible realization of the aggregate shocks.

7. Use a numerical root-finder to solve for the zeros of the residual equations, subject

to each of the remaining equilibrium conditions. Numerical integration is needed at

this step to compute expectations in the equilibrium equations. The result is a set of

policy values in each point i of the state space that satisfies the equilibrium system

of equations up to a specified tolerance level, which characterizes the updated policy

function for the next step.

8. If the distance between the candidate policy function and the updated policy values

obtained in the previous step is less than the convergence criterion for all i, then the

policies have converged to their equilibrium values. Otherwise, use the updated policy

functions as the new candidate and go back to step 5.
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